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It is shown that the contribution of chain entanglements to the equilibrium shear modulus, recently 
deduced theoretically and measured experimentally, cancel almost quantitatively the downward adjust- 
ment in the front-factor g of the equation of state used in such theories. This downward revision of g 
is contested theoretically on algebraic grounds, and the classical value of unity is recovered as a result. 
This classical value is supported by reinterpreting literature data on silicone rubbers by Valles and 
Macosko, and by new measurements (which confirm less accurate ones obtained earlier by a more dif- 
f icult method) on a well-tried polyester system near its gel point. There are indications that the con- 
tributions of entanglements to the equilibrium shear modulus are all too easily overestimated by 
theory, and the technologist is advised to prefer the remarkably simple formulae of the graph-like- 
state theory of phantom chains. Dynamic entanglements can readily explain qualitatively the anelastic 
effects here reported, viz. frequency shifts in the plot of the real part of the dynamic shear modulus 
against conversion in the range a/o~ c ~< 1.01 (where ot c is the critical conversion at the gel point). Here 
too it seems as if graph-like-state theory will ultimately account for the observations, but at least cer- 
tain eigenvalue problems will have to be solved first. An intriguing observation, that at the gel point 
of the polyester system the spectrum of relaxation frequencies approaches a block distribution, so 
that every finite value is equally likely, may have general validity. 

INTRODUCTION 

On re-examining the classical network theory of rubber elas- 
ticity some investigators 1'2 have tried to prove that it 'over- 
rates the restriction of freedom caused by a crosslink' and to 
correct it accordingly. However, as we shall document, recent 
searching experimental studies fail to detect such overrating, 
since measured moduli are not significantly below those calcu- 
lated by the classical formulae. Accordingly, agreement with 
experiment of the 'corrected' network theory has required a 
further compensating correction which happens to restore 
the equilibrium modulus essentially to its former magnitude. 
This compensating correction has been based - not on the 
intrinsic (one-dimensional) theory of network graphs - but 
on the celebrated effects of entanglements which are sup- 
posed to arise from embedding the network graph in a three- 
dimensional space. By adjustment of an empirical constant 
concerning these effects, satisfactory agreement with experi- 
ment seems to be restored. We shall present our objections 
to the two compensating corrections, and conclude that, im- 
perfect though the classical theory might be when compared 
to much more exact experiments than are possible at present, 
the technologist would be ill-advised to attempt corrections 
at this stage. 

THEORY OF THE FRONT FACTOR 

Duiser and Staverman 1 argued the need for their correction 
of the network theory very strongly, claiming that the classi- 

* Based on a lecture to the International Rubber Conference, Kiev, 
USSR, October 1978 

cal formula for the configurational free energy (in the usual 
notation): 

,aFc=kT~ r2 [ax 2+ 2 2 3] (1) 
2 r~  0 ~; +~;  - 

was untenable, and should be changed to 

aFc =kT H r0 2 or; +% - 

Graessley 2 obtained the same correction with a more trans- 
parent form of the averaging procedure employed. His 
argument is elegant and seems persuasive; we therefore detail 
our objection to it. 

Figure 1 portrays Graessley's tree-like j th-order network 
for f =  4 active functionalities andj  = 3 (where j is the index 
of the highest generation as shown). The junctions fixed ran- 
domly in 3-dimensional space are marked by stars. By inte- 
gration, he ffmds: 

ukT 
AF c = R / ( f ) ~ -  [a 2 + a 2 + a 2 - 3 ]  (2a) 

(The multiple integration, as usual in graph-like-state theory, 
factorizes into identical single integrations, as the solution of 
an eigenvalue problem whose eigenvalues 'fortunately' can- 
cel from the treatment. The initial embedding in 3-D space 
is thus reduced to a formality). 

In equation (2a), Rj(f)  is given (dropping reference t o f  
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Figure 1 Graessley's 2 3rd order network (schematic}. The active 
junction point, shown as the root of the family tree, makes a contri- 
bution to the modulus calculated on the assumption that after j = 3 
generations the junctions (crosses) are fixed in random (average) 
positions. Circles denote mobile junctions 

throughout) by: 

! 
R i ~ F i - - -  (3) N/ 

where Fj is the fraction of chains with one fixed end: 

F/= ( f -  2 ) ( / -  1)/ - l / f ( / -  1 ) J -  l] (4) 

and Nj the total number of strands: 

N t = f i ( f -  1) / -  l l / ( f -  2) (5) 

Graessley gives an elegant alternative to (3): 

R i _ f  - 1 ~ _ 2  f Fi+ (1 - F/) (6) 

in which the coefficients ofF i and (1 - F/) no longer de- 
pend on j. He therefore feels free to apply equation (6) to 
more realistic networks than Figure 1, i.e. networks with 
few fixed junctions so that F / ~  0 rather than F/ 
( f -  2)/(f - 1) asj -~ oo (equation 4). This he achieves by 
putting Fi = 0 in equation (6), to obtain: 

Rj=(f-2)/f ( i  =1 ,2  . . . .  ) (7) 

But is this valid? 
Equation (6) follows by algebra from equations (3)--(5). 

Putting F/= 0 in equation (6) is equivalent to putting F/= 0 
in equation (4). Accordingly, for the given network 
(Figure 1), F /=  0 is legitimate only for two cases of no phy- 
sical significance, viz. f =  1 and f =  2. From equations (3)-  
(5) we can obtain the solution (when F/= (3): 

Ri = - ( f  - 2)/f[(f - 1 ) / -  11 (8) 

Algebra does not allow the choice of equation (7) as being 
physically the significant one. Algebra allows no contradic- 
tion between equations (7) and (8), and they do agree pre- 
cisely for those values off,  viz. 1 and 2, for which the algebra 
is legitimate. 

The derivation of equation (2a) shows no prospect that, 
in these circumstances, equation (7) can be applied to arbi- 
trary different networks, constructed so that F / ~  0 as ]-* oo. 
The realistic networks exhibit this asymptotic behaviour of 
F~ not because fixed junctions in Figure 1 should be redefined 
a~free, but rather because the fixed junctions are overcounted 
in Figure 1 in a specific way. Many of the distinct junctions 
which would be shown for large j are in reality to be 

identified because of cycle formation. In a valuable part of 
his analys~, Graessley shows that for his networks (Figure 1) 
the effect of cycles on the front-factor Ri(f) in equation (2a) 
is negligible (see Imai and Gordon 3) provided small cycles 
(forj  = 1,2,3, say) are rare. That they are rare arises from 
the breakdown (over short times involved in crosslinking) of 
Gaussian statistics of chain conformations in gels, as implied 
in a forceful statement by James and Guth 4, cited by Gordon, 
Ward and Whitney s, (cf. Gordon and Ross-Murphy 6, Du~ek 
et aI. 7). It follows from the negligibility of cycles that the 
appropriate form ofR 1 is already the correct estimate of 
the front factor. Now equations (3)-(5) give 

R 1 = ( f -  1) I f  (9) 

However, Graessley also presents a calculation for essentially 
the same kind of network, but now built up around a central 
strand instead of a central junction. This is a better procedure 
for calculating R 1 and it yields: 

R 1 = 1 (10) 

In accepting this as the best estimate for the front factor 
contribution from the network structure, we thus return 
exactly to the value originally championed by Wall and 
Flory s, which implies a factorization of the partition func- 
tion into equal contributions from each active network 
chain. 

CALIBRATION OF CONVERSION IN A NETWORK- 
FORMING REACTION BY CHEMICAL KINETICS 

The testing for proposed correction factors to the classical 
elasticity theory demands high experimental accuracy. The 
exploitation of the accuracy of time measurements by cali. 
brating the successive states of cure of a given sample in the 
framework of chemical kinetics s seems almost mandatory. 
The choice of a single link-forming reaction, not prone to 
side reactions (a danger with urethane reactions9), and whose 
kinetic mechanism is clearly established in micro- and macro- 
molecular substrates, is highly desirable. Our choice has 
long settled on self-catalysed esterification, extensively 
studied by Hinshelwood t°, Flory n, and many others. In 
absence of substitution effects 12, and when cyclization is 
allowed for ~3, the bulk reaction is second order in COOH 
and first order in OH within the small experimental error 
up to well past the gel point. In benzene 1,3,5-triacetic acid 
(BTA)/decamethylene glycol (DMG), substitution effects (see 
Gordon and Leonis t2) are certainly not measurable and 
cyclization effects on statistical parameters like the weight. 
average degree of polymerization DPw or the number Ve of 
elastically active network chains (EANCs) per BTA unit are 
amply corrected by rescaling the gel point from its theoreti- 
cal value O~c, theo r = 0.707 in absence of cyclization to the 
measured overall critical converison ~c = 0.724, which in- 
cludes a cyclization component. The cyclization component 
is somewhat smaller than ~c - 0.707, because cyclization in- 
creases slightly the number of intermolecular links needed 
for gelation t3,t4. For the DMG/BTA system, then, we cal- 
culate Ottheo r by equating O~theor/Otc. theor = [3/~c. 

Figure 2 shows one of two similar third-order rate plots 
for self-catalysed DMG/BTA polyesterification, determined 
by titration with 0.1 N methanolic NaOH in methyl ethyl 
ketone/methyl alcohol (50•50 w/w). Very slight concavity 
upward is expected due to the minute cyclization effect in 
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Figure 2 Thi rd-order  rate p lo t  fo r  s to ich iometr ic  (r = 1 ) DMG/BTA,  
showing er ror  bars fo r  individual points 

Table I Kinetic calibration of rate constant and gel points at 90°C 
for D M G / B T A  in the melt 

Gel time Rate constant, 
(rain) k (rain -1 ) /~c 

Run 14 935 0.00526 +_ 0.00006 0.721 -+ 0.003 
Run 15 1006 0.00522 -+ 0 .00004 0.726-+ 0.003 

this system. The heavy line is the best-weighted least-square 
fit to the data (the accuracy decreases with increasing con- 
version as shown by error bars); the light lines denote confi- 
dence limits of  95%. The derived parameters are shown for 
both runs in Table I together with their standard deviations. 

Gel times are not expected to be reproducible, because 
the reaction at 90°C is started after a variable amount of 
initial fast reaction at 170°C to promote homogeneous con- 
ditions. Each individual gel time was determined by the 
method of Covas et al. ~s. The viscosity is measured as a func- 
tion of time and assumed to be related to the weight-average 
molecular weight ~t w by a Mark-Houwink relation: 

t 

lOgl0r/= K + K logloMw (11) 

Then ~t w is calculated as a function of time, by first evaluat- 
ing/3 =/3(t) from the rate constant (Table 1) and the gel time 
t c. The typical determination of t c by least-square lineariza- 
tion of a plot according to equation (11) is shown in F~gure 3 
The calculation of~tw from/3 follows (with justifiable 
neglect of cyclization) the formulae derived from cascade 
theory ~s. 

Evaluating viscosity measurements over 11 runs with the 
falling-sphere method and 13 runs by the Weissenberg rheo- 
goniometer, we found the constant K '  in equation (11) to 
be 1.03 with standard deviation o = 0.05. This result agrees 
with the graph-like-state model (K'  = 1.0), or percolation on 
a Cayley tree, as first formulated for polycondensation by 
Flory and Stockmayer. The result is quite incompatible with 
scaling and group-renormalization theory depending on an 
embedding space 16 (K'  = 1.2). 

FITTING OF TWO SETS OF COMPLEMENTARY DATA 
TO GRAPH-LIKE-STATE THEORY 

The data of Valles and Macosko ~7 and our present measure- 
ments, fitted in this section to the same graph-like-state 
theory, are complementary in two ways. 

Graph-like state o f  matter (12): M. Gordon and K. R. Roberts 

(i) The former deal with networks built from primary 
chains by end-linking, while the latter relate to polyesterifi- 
cation networks built from a polyfunctional micromolecular 
mixture 

(ii) Valles and Macosko deal with relatively high degrees 
of crosslinking, G'  = 104-3 x 105 Nm -2, where their silicone 
rubbers have attained perfect elastic behaviour (G" = 0, their 
Figure 1), while ours cover the range from almost G' = 0 to 
3 x 103, and where anetastic effects require extrapolation of 
6o ~ 0 (see Figures 8 - 1 0  below). 

Their silicone networks are constructed according to the 
reactions 

T r CH3] ~, ['Si [OSi (CH3J2H] 4 f = 4  
/ I  | I .,~ 

C H 2 = C H - - S i - - O - - / S i O I - - S i - - C H ~ C H 2  

I tl / I / 
CH 3 LCH3]I45 CH 3 L~Si[OSi(CHa)2H]3 f = 3  

(12) 

Their kinetic measurements are fitted to the following equa- 
tion (their Figure 2) with more noticeable systematic devia- 
tions than those which emerge from the more sensitive plot 
of Figure 2 for polyesterification: 

d[-Sin] ] d t  = 1.07 x 10-4 [-Sil l ]  2.2 (13) 

This equation is, moreover, an empirical one with fractional 
reaction order, not supported by mechanistic analysis, unlike 
esterification, which features two integral orders. Neverthe- 
less, we regard the data on the silicone reaction as perfectly 
serviceable. 

Refitting o f  data on end-linked silicone rubbers ~7 
We refit the data of Valles and Macosko on: 
(a) three-functional branch units ( f =  3 in equation 12) 

and stoichiometric ratio r = 1 (of  functionalities of branch- 
units to funtionalities at primary chain ends). The original 
data and fittings are shown in their Figure 5, and the refitt- 
ing in our Figures 4 and 5; 

(b) We also refit the data in their Figure 3 for f =  4, r = 1 
in our Figure 6, and 

(c) the data in their Figure 4 for f =  4, r = 1.56 (stoichio- 
metric inbalance) in our Figure Z 

Our refittings employ the following equations, which are 
readily derived from the formalism given by Dobson and 
Gordon m on the (graph-like) notion of Scanlan-Case-type 
active network chains. Thus we find for r = I and any func- 

2 4  

A B C  D ~ 2.o ~ 
_o 

8 '1 .6  

1 2  ~ ' t ~ ~ ~ L J , , 
4 - 0 0  4.16 4 3 2  4"48 4-64 4 "80  

LOglo A~ w 

Figure 3 Viscometr ic cal ibrat ion of gel po in t  15, run 29. Assumed 
tc: 169.0 min (A), 172.0 (B), 175.0 (C), 178.0 (D), 181.0 (E). 
Opt imal  l inear i ty occurs at C (t c = 175.0 rain). Each line contains 
102 measured points used in opt imizat ion.  Thei r  scatter f rom the 
lines shown is not  not iceable on this scale 
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Valles and Macosco's 1"/Figure 5, showing shear modulus 
against extent of reaction in the silicone system (f = 3, equation 12). 
Here refitted to optimize one run (triangles) to equation (18) with 
r = 1. For parameter g see Table I 
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Figure 5 A, As Figure 4 but omitting irregular high-modulus results 
from optimization; B, Plot for g = 1/3 in equation (18) or e = 0 
(absence of entanglements) in equation (22). Close to the gel point 
(see Figures 8-10 for DMG/BTA), the entanglement term in e be. 
comes negligible and thus allows g to be determined 

tionality [ of  the branch units the number of  active network 
chains per branch unit: 

(:) l*e=- ~ i ( 

i=3 

1 - tz + o t o y - i ( 1  - -O)/a  d (14 )  

where v is the extinction probability for a link leading from 
anf-functional unit to a difunctional one. F o r f =  3 and 
arbitrary r we fred (with a the fractional conversion of  func- 
tionalities belonging to branch units): 

3 t % = ~ [a(1 -- v)] 3 = 1211 -- (112r~2)13 (15)  

since 

o = [1 - ra2(2  - (~)] Ira 3 (16) 

Assuming the density of  the rubber is 1.0 g/cm 3, the num- 
ber of  EANCs per cm 3 is given, using N for Avogadro's num- 
ber, by: 

v e = 12[1 - ( l / 2 r a 2 ) ]  3 {2rN/[2  x 269 x r + 3 x 11040]} 

(17) 

which leads to the following equation for the equilibrium 
shear modulus at 316K: 

Ge/Nm -2 = 1.873 x 106g[1 - ( 1 / 2 m 2 ) ]  3 (18) 

where g is the front-factor, proposed to be unity above. Our 
Figure 4 shows as the highest measured modulus, for ct = r = 1, 
G e = 1.92 x 10 s Nm -2  (corresponding to a front factor of  
g =  o .82) .  

For the case f =  4, we have 

u = 1 - (3/2a) + I(4r - 3r2(~2)l/2/2r(~ 2] (19) 

and 

v' e = 2[a(1 - u)] 3 [3  - 2 a ( l  - o)] ( 2 0 )  

and for density 1.0 g/cm 3, the theoretical modulus becomes, 
using equation (19): 

Ge/Nm -2 = 2.345 x 105g[-(1 - o)] 3 [3 - 2~(1 - o)] 

( 2 ] )  

3 0  

25 IX 

j 3 15 ~IX 

E IO 

0.6 0 7  6.8 ' 0'.9 ' , 6  
C o n v e r 3 i o n ,  (::t 

Figure 6 Silicone 17 (f = 4, equation 12) data plotted as in Figures 
3 and 4. Optimized fit to equation (21) (with equation 19), r = 1. 
For parameter g see Table 2 
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Silicone data 17 for f=  4, r = 1.56 treated as in Figure 6 
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Table 2 Front-factors g obtained from Valles and Macosko's data 
by computer optimisation from equation 18 or 21 (with 19) 

Funtionality f Stoichiometric 
of branch units ratio r Figure and run g 

3 1 4: run A (triangles) 1.100 
(whole range) 

3 1 4: run B (squares) 0.982 
(whole range) 

3 1 5: run A (triangles) 1.001 

3 1 5: run B (squares) 0.797 
4 1.0 6 0.970 
4 1.56 7 1.084 

where [A 3 ] 0 is the concentration of branch units (mol m-3). 
The first term in the numerator on the right should be 

compared with the unique term on the right of equation 
(15), and is readily obtained from the quite general formalism 
of Dobson and Gordon ~s by weighting each active junction 
point by the factor (equation 7 above), equal in this case 
simply to a constant, viz. 1/3, suggested by Duiser and 
Staverman ~. This substantial reduction in modulus, the 
theoretical justification of which is questioned above leads to 
F~,ure 5B. This reduction in modulus is compensated by the 
second term in equation (22), resting on the assumption of 
a contribution from entanglements. 

Mean g 0.989 
(excluding squares) 1.039 ANALYSIS OF NEW DYNAMIC DATA ON CRITICALLY 

BRANCHED DMG/BTA 

36 

% 
z 24  
Q 

t . )  

- 12 

0 
270  3 0 0  330  3 6 0  3 9 0  4 2 0  

Time t (rain) 

Figure 8 Plots of G'(CO) against t ime for run 22 on stoichiometric 
DMG/BTA. Frequencies, from left to right: CO= 25, CO= 10, co= 5, 
co= 2.5, CO = 1.0, Co = 0.1 Hz. Optimized fits of equation (23) with 
125), adjusting t c. G'llto), except that O~(0.1) was constrained to be 
zero. Henceg(0.1) ~ g ( 0 )  =1.205 

The original Figure 3 shows ~7 an extrapolated value for 
ct = 1, r = 1: G e = 2.65 x 105 Nm -2, which, compared with 
equation (21) implies a front factor g = 1.13. The least- 
square fit of equations (18) and (2 I) (with 19) gives front- 
factors o fg  averaging 0.99 and deviating by no more than 
+0.12 (see Table 2). The systematic deviations of the 
measurements from the fitted curves are similar in form to 
those found by Valles and Macosko ~7 in fitting their en- 
tanglement theory, ours being slightly worse in Figure 6, 
and slightly better in Figure 7, than theirs. All three experi- 
mental runs do exhibit an increase, rather sharp in our 
Figure 4, in rate of increase in Ge with conversion around 
G e ~ 1.2 x 104 Nm -2, not modelled by our theory, nor that 48 
of Valles and Macosko. It seems likely that this effect ref- 
lects, not deviations from the models assumed for chemical 
kinetics or rubber elasticity, but possibly some instrumental ~ 32 
error in measurements of moduli. F~gure 5 shows the result z 
of excluding these suspect data, with modulus above 103 N/m -2, O 
included in Figure 4. The data represented by squares seem to ° O 
have suffered an error in the determination of the gel point. O 16 

Valles and Macosko's ~7 original fits of these their data - 
were based on the equations of Miller and Macosko, exem- 
plified by the case f =  3, thus 

O 

(22) Figure 9 

210 240  2 7 0  3 0 0  3 3 0  3 6 0  
Time t (min) 

As Figure 8 but for replicate run 23. g(0.1 ) ~ g(0) = 1.336 

Measurements of the real part of G'(~o) were performed in 
the range O. 1 ~< 6o ~< 25 Hz on stoichiometric DMG/BTA 
mixtures at 90°C (controlled to -+0.05°C) in a suitably 
adapted Weissenberg Rheogoniometer (Farol Research 
Engineering Ltd). Data-handling was via a PDP 8 computer. 
Some experiments including benzene-m-diacetic acid were 
also found satisfactory but will be reported elsewhere. Data 
are fitted to theoretical curves for two runs in Figures 8 and 
9, and parameters deduced from optimizing fits to the 10 
best runs are given in Table 3. Each run consisted of a single 
kinetic experiment. Before gelation the viscosity was measured 
continuously at a constant shear rate not exceeding 85 sec-1. 
After gelation, the real part G'(co) of the shear modulus was 
charted by setting and resetting the frequency co of  the rheogo- 
niometer to between 4 and 6 values sequentially (Table 3). 
The amplitude (0.03 rad) was small enough for applying the 
linear theory of viscoelasticity; G'(co) was found constant 
over a forty-fold range of amplitudes. 

Optimization of fits of the data-points to theory for 
G' (co) versus time t in Figures 8 and 9 was in terms of two 
simultaneous equations. Equating the relative intermolecular 
conversion ot/a c to ~/[3 c (which includes the small intramole- 
cular reaction component), and accordingly/3 c = 2 -1/2, the 
first equation (cf. 18): 

G'(co)  = 1 2 g ( c o ) [ A 3 ]  0 R T [ ]  - (1/2/~2)]  3 + G~(w)  (23 )  

relates the storage modulus to conversion. The concentra- 
tion [A3] 0 of BTA units (mol m -3) was based on the excel- 

u e = {411 - (1/2ra2)] 3 + 16(e/~4) [1 _(1/2re2)] 4}/[A3] 0 
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Table 3 
(a) Analysis of dynamic data on two typical runs (DMG/BTA, • = 1 ) at 90°C, using optimized fits to equation (23) 

/~w x 10 - 4  

tc, ap p (co) g((~) G~ Nm -2 ~c, app at/3c, ap p 
Frequency 
(Hz) Run 21 23 21 23 21 23 21 23 21 23 

Standard deviation 
a on G ' (~ )  

(equation 23) 
(102Nm -2) 

21 23 

25 291.0 217.1 0.773 0.722 302 275 0.9941 0.9910 5,5 3.6 
10 302.9 233.6 0.802 0.831 264 155 0.9964 0.9942 8,9 5.6 

5 309.7 244.4 0.848 0.954 176 111 0.9976 0.9963 13,9 8.8 
2.5 314.2 251.4 0.889 1.053 113 75 0.9985 0.9976 21,7 13.7 
1 318.7 257.6 0.953 1,173 62 42 0.9993 0.9988 49.3 26.9 
0.1 322.3 264.1 0.995 1.336 0 0 1.0000 1.0000 oo oo 

1.7 7.3 
1.8 1.3 
0.6 1.4 
0.8 1.3 
0.7 1.1 
0.9 1.1 

(b) Front-factors g(0.1) for ten best runs 

Run 13 20 21 22 23 24 25 27 28 29 
g(0.1) 1.190 0.895 0.995 1.205 1.336 1.125 0.928 0.916 0.815 1.004 

Mean o 

1.041 0.157 

(c) Mean front-factors g(~J) 

Number of runs available 5 10 10 5 
frequency ~J(Hz) 25 10 5 2.5 
(g (to)) 0.644 0.695 0.764 0.895 
o for (g(o~)) 0.121 O. 131 0.109 0.117 

10 10 
1.0 0.1 
0.915 1.041 
0.146 0.166 

lent approximation of specific gravity equal to 1.0 g/cm 3 
and the formula(see equation 17): 

[A3] 0 = 2/[3 x 174.29 + 2 x 252.23 - 6/3 x 18.02] (24) 

The first term on the right of equation (23) follows from 
equation (I.5) for the ring-free model (for r = 1, tx =/~) and 
is constrained to be zero before the gel point. The second 
term G~(co) makes allowance for a constant finite liquid-type 
contribution, at any given frequency, to the modulus from 
non-EANC sources both before and after gelation. 

The second equation in the optimization serves to deter- 
mine 13 as a function of measured time, t, for insertion into 
equation (23). This is the third-order kinetic law (see 
Figure 2): 

(1 -/3) -2  - (1 - 2-1/2) -2 = 2 k ( t  - tc) (25) 

with k = 5.24 x 10 -3 min -1 as determined (Table I )  by in- 
dependent titration measurements. The optimization was 
based on the assumption that the lowest frequency used, 
w = 0.1 Hz, would be close enough to zero for the fitting 
of this bottom curve (Figure 8 and 9) to be optimized over 
the two parameters t c and g(co) only, while setting G)(0.1) = 
0. It is seen that this does represent the data, and the curves 
at co = 0.1 are shown below to be close to the theoretical 
limit G'(0) by an empirical extrapolation (equation 27). At 
the higher frequencies, G~(co) was a third parameter for op- 
timization, and though its contribution is small, it renders 
the optimized parameter values less accurate. 

The apparently critical conversion/3c, app(W) falls with 
increasing frequency, as the apparent gel point tc, app(W) 
occurs progressively earlier (Figure 8 and 9). This/3 c app is 
set equal to ~3 c = 2 -1/2 at the minimal frequency of ' 
0.1 sec -1, and calculated (Table 2) from the equation (see 
25): 

[ 1 -/3c, app(~)] -2 _ ( 1 - 2-1/2) - 2 = 2k [ tc, app(6O) - tc(O. 1)] 

(26) 

for other frequencies. The fitting procedure thus defined 
amounts to absorbing the disturbing effect of frequency on 
G'(~o) by the same rescaling procedure, based on the critical 
(gel) point, as applied to the small incursion of intramolecular 
bonding, in accordance with the established methodology in 
the field of critical phenomena (see, e.g. Fisher and Scesneylg). 
The important parameter for our purpose isg(co). In every 
run, the value ofg(co), found by optimizing, rose as frequency 
decreased from 25 to 0.1 Hz. The meang(25) over the 
five available runs was 0.644 (Table 3c). 

The plots of G'(~) vs. tit  c should, of course, converge to 
a single curve at high enough conversion when the rubber 
has become perfectly elastic, as shown for their silicone rub- 
bers by Valles and Macoskol7 in their Figure 1 over a 105- 
fold frequency range. The convergence is just perceptible in 
our F~,ures 8 and 9 at the high modulus end. 

Even for the quasi-static measurements of 0.1 Hz, two 
parameters, t c and g(0.1) are adjusted in the optimization 
according to equation (23). However, since the optimized 
parameters agree well with values available independently, 
the fit can be described as practically parameter-less. 

(i) First we compare t c obtained by optimization accor- 
ding to equation (23), representing back-extrapolation of 
the modulus, with t c obtained from forward extrapolation 
of the viscosity (see Figure 3) in the same run. Equivalently, 
we may translate the t c values to/3 c values (equation 25). It 
emerges that/3 c from back-extrapolation of the modulus is 
generally between 0.002 and 0.005 lower than the value 
from viscosity. This small discrepancy is significant and in- 
telligible, because shear-rate effects will raise the viscometric 
gel point, but lower (Table 3a) the gel point from modulus 
data. 
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(ii) Secondly, the front-factor g, equated to g(0.1), agrees 
within the documented experimental error with the classical 
value of unity, rehabilitated by theoretical arguments in the 
Theory section above (Table 3). To show this, we have cal- 
culated the g-values from optimization of the 10 trustworthy 
replicate runs in Table 3b, which range from 0.815 up to 
1.336 (Figure 9), with mean value 1.041 and standard devia- 
tion 0.157. Dividing this standard deviation by the square 
root of the number 9 o f  degrees of freedom for 10 data 
points, gives 0.052 as the standard deviation of the mean 
front-factor. The mean 1.041 itself compares satisfactorily 
with the value 0.920 obtained by taking into account, not 
merely the g(0.1) values, but the whole range of data. Thus 
the 50 curves available for 6 frequencies, mostly with over 
10 data points each, yielded the mean front factors (g(~)) 
listed in Table 3c. These were fitted to the empirical ex- 
trapolation formula: 

g(co) = 0.920 exp(-O.O168 w) (27) 

with coefficient of determination r 2 = 0.74, which gives 
g(0) = 0.920. The exponent -0 .0168 cannot be trusted 
quantitatively, but the decline ofg(eo) with increasing ~ is 
clearly real and indeed expected. It represents delay in the 
rate of build-up of the effective network due to orientational 
effects on the chains under shear. 

DISCUSSION 

Valles and Macosko 16 open their paper with the statement: 
'The statistical theory of rubber elasticity is one of the 
simplest and most successful theories in polymer science.' 
Our work not only confirms this verdict but simplifies the 
theory back to its much earlier form, by reinstating the clas- 
sical front-factor g = 1 and by eliminating the parameter e 
and the contribution from entanglements which it aims to 
model. These simplifications leave the fit to their own data, 
and ours on a complementary network-forming system, 
within experimental error, essentially without adjustment 
of parameters. In fairness, it should be pointed out that 
the value e = 62 mol m -3 used by these authors agrees well 
with deduction by Langley and Ferry 2° from dynamics of 
linear poly(dimethyl siloxane), and by Langley and 
Polmanteer 2= for the radiation crosslinked polymer. On the 
other hand, our new measurements on DMG/BTA suggest 
that the effect of entanglements is at least greatly exagge- 
rated by the value of e just cited, for the following reason. 
Our measurements were deliberately taken in the range of 
critically-branched structures near the gel point, recom- 
mended for eliminating disturbances from rubber elasticity 
studies by Dobson and Gordon TM. We calculate that the 
mean value of the term in equation 22 for our range of con- 
version a to be 1/13 that for their higher range of conversion 
on the silicone system, thus essentially eliminating the effect 
of entanglements (see Figure 5). Yet both systems are here 
fitted to values ofg  close to unity (which we back theoreti- 
cally), while e = 62 requires g ~- 1/3. 

In assessing the reliability of the kinetic calibration of 
conversion we recall our warning that the percentage error in 
the rate constant is tripled when passing to g. It may be 
thought that there is evidence in Figure 2 that the apparent 
rate constant of the linking process in DMG/BTA increases 
just before the gel point, where points lie above the calibra- 
tion line. If  so, the front factor would be lowered. Inde- 

Graph-like state of matter (12): M. Gordon and K. R. Roberts 

pendent measurements by the steam pressure technique on 
similar esterification reactions s have, however, shown that 
the rate behaviour is quite regular through the gel point re- 
gion, without any increase in apparent rate constant. In par- 
ticular, the apparent rise in the last three titrations in Figure 2 
is certainly much larger than that accountable for by the neg- 
lect of the small cyclization component, as confirmed by 
computer calculation. Titration of nearly gelled materials 
is hazardous, and we believe the calibration line to reflect 
the correct rate constant to about 1% accuracy (Table 1) 
throughout the critical branching region used for our dynamic 
me asu rements. 

The value g = 1, strongly supported by measurements on 
the same system DMG/BTA using the microsphere- 
rheometer s, is now confirmed by the more accurate com- 
puterized cone-and-plate instrument. 

Role of  entanglement theory 
The entanglement notion serves as a correction to poly- 

mer theories, which makes sense when matter, represented 
by chain-graphs, is embedded in a three-dimensional space. 
The notion of a physical space is extremely helpful in the 
postulation and construction of physical theories. Since 
Kant's 'Critique of Pure Reason' most physicists have gone 
further and taken its 'existence' to be proven, though 
Leibniz would have frowned at such ontological commit- 
ment. Flory's notion of a phantom chain invites us not to 
take seriously the embedding space of a rubber. It turns out 
that many physical properties of amorphous systems are 
well modelled by unembedded molecular graphs. This has 
been illustrated in earlier parts of this series of papers entitled 
the 'Graph-like state of matter '  (see refs 7 and 22). Using 
the present experimental data, and their analysis we consider 
first equilibrium and then dynamic entanglement theories 
from this viewpoint. 

Equilibrium modulus and permanent entanglements 
The experimental values of the front-factor g, collected 

with averages and standard deviations in Tables 2 and 3c, 
demonstrate that present experiments on two diverse 
network-forming systems are far from accurate enough to 
detect deviations from the purely graph-like classical model 
(g --- 1). In other words, rubber elasticity here provides no 
evidence of effects involving an embedding space, or that 
the physical world is three-dimensional. Effects which have 
been derived from theory, some increasing and some de- 
creasing the modulus, have thus cancelled out, if indeed the 
theories are to be trusted. 

The various approaches to the factors leading to supposed 
reductions in g (for the usual case f =  4) are hard to review. 
They do not merely treat the same aspects of the basic 
model. Eichinger's 2a argument for g = ½ is purely graph-  
theoretical and does not involve the embedding space. 
James and Guth 4 based their estimate o fg  = ½ on a supposed 
statistical effect, which is no longer accepted, leading to a 
shrinkage of the network in the course of its formation. 
Edwards 24 obtained the same estimate from self-consistent 
field calculations; Imai and Gordon 3 from considering the 
correlations in Brownian motion between neighbouring net- 
work chains attached to the same active junction. It is per- 
haps not always certain that calculated second-order effects 
are not nullified by the large number of neglected terms, 
which are taken to be individually of higher order. 

The increase in g derived from the notion of entangle- 
ments could easily be overestimated. Sound statistical cal- 
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Figure 10 (a) Permenent entanglement after Ziabicki25; {b) 
neighbouring configuration which has just escaped entanglement 
during vulcanization 

culations by Ziabicki 2s, containing the necessary integrations 
over configuration space, are based on the self-explanatory 
model of Figure lOa. He has emphasized the caution required 
in applying the estimates obtained to the whole molecula~ 
network of a real rubber. There is an immediate way of 
visualizing the difficulty. The desired effect due to an en- 
tanglement depends on the change during deformation in 
the ratio of the number of allowed configurations for phan- 
tom chains (passing freely through each other), to that for- 
bidden to real chains entangled as in Figure lOa. The trouble 
is that during crosslinking the two chains are almost equally 
likely just to escape becoming entangled, viz. by becoming 
fixed in configuration lOb. This configuration allows the 
states forbidden to Figure lOa, and vice versa. If Figure lOa 
leads to greater restriction on freedom during deformation 
(which depends, as Ziabicki has noted, on the direction of 
the strain), then lOb becomes correspondingly less restricted. 
The net effect on the modulus, to be caught in the front- 

E 26 factor, must therefore be small, dwards has shown that 
the net effect is positive, in the direction of increasing g. 
Langley 27 regards the entanglement parameter e in equation 
(22) as (one half of) the 'maximum potential contribution of 
entanglements' to the modulus, which 'should be regarded as 
the product of the potential entanglement density and the 
effectiveness of a trapped entanglement relative to a chemi- 
cal crosslink'. He does propose a plot which in principle 
could determine e from dynamic measurements. We believe, 
however, that theory as well as experiments need refinement 
to establish the actual net effect of entanglements on the 
modulus at equilibrium, which is likely to be too small to 
concern technology. 

Dynamic entanglements 
The entanglement concept is of incomparably greater 

utility in treating dynamic effects than in equilibrium theories. 
We shall sketch in qualitative terms how our new measure- 
ments are rationalized in terms of this concept, but also how 
a quantitative theory is likely to be ultimately simpler if the 
mathematical model is freed from postulates which depend 
on the topology of an embedding space. 

The frequency shifts observed over 250-fold range of 
frequency in typical Figures 8 and 9 are characteristic of the 
critical-branching region near the gel point. At higher con- 
versions, these curves would converge to a single one, a pro- 
cessjust noticeable at the high-modulus end. The silicone 
rubbers of Valles and Macosko 17, featuring much higher deg- 
rees of crosslinking and moduli, had reached the asymptotic 
state of perfectly elastic bodies (their Figure 1) over a wider 
frequency range. Current theory attributes the anelastic 
effects revealed by frequency shifts to a conversion, which 
rises with increasing frequency, of relaxable entanglements 
into active junction points, which contribute unrelaxed phy- 
sical crosslinks in addition to chemical crosslinks (covalen- 

cies). This leads, as it should, to the apparent gel point being 
observed earlier. The narrow range of states between this 
apparent gel point and the true one begins to make manifest 
a continuous region of states intermediate between a true gel 
point and a true entanglement transition. The true entangle- 
ment transition is, of course, well documented in linear poly- 
mer systems 2a, where it is reflected in a sudden increase of 
the viscosity exponent when the weight-average molecular 
weight Mw passes through some value in the range 104-105. 
At our highest frequency of 25 Hz, available from 5 separate 
runs with DMG/BTA which may be compared with individual 
results for two runs at the end of Table 3a, we calculate the 
following results. The apparent critical conversion was 0.992 
with standard deviation 0.003. M w at this conversion was 
4.7 x 104 with standard deviation 1.7 x 104. It is plausible 
that the apparent critical conversion is approaching some 
limit as the frequency is increased, and that M w thus ap- 
proaches a value typical for the entanglement transition of 
linear systems. 

The notion of entanglement is, of course, inspired by our 
intuitive insight into the topological structure of a three- 
dimensional space. Yet the signs are that even dynamic pro- 
perties, so plausibly explained in qualitative and even quanti- 
tative terms, will ultimately be modelled by purely one- 
dimensional theories based on graphs unembedded in a 
Riemannian space, thus simplifying the conceptual frame- 
work and the mathematics. Occam's razor was applied in 
this way to the Rouse model, which is fundamental for 
chain dynamics, when Forsman 29 reduced the calculations 
of Rouse spectra to an eigenvalue problem belonging to un- 
embedded graphs. Chompff and Duiser 3° obtained the spec- 
trum of a whole regular chain network by appropriate sum- 
mation of the different spectra of suitably decoupled (non- 
overlapping) chain-segments. They also explicitly extended 
their treatment to 'entanglement-networks', essentially by 
introducing fractional weights to points of unembedded 
graphs. Such points represent notionally those contacts 
which are weaker than covalent crosslinks in an unembedded 
model. The present measurements on DMG/BTA suggest 
that, as is usual, the solution for a completely random sys- 
tem will finally be simpler than for regular networks; but, 
as is also usual, this will require some novel combinatorial 
analysis. The following intriguing observations offer a 
starting point. 

Figure 11 shows typical plots of G~(w) against co over 
the 250-fold frequency range available in this work for diffe- 
rent degrees a[ac of relative conversion in the critical region. 
The plots become more concave, viewed from the frequency 
axis, as a/a c increases. For a liquid before gelation 

16 

'E 
Z 

0 6 8 Io 
Frequency, co (Hz) 

Figure 11 Typical plot  of G'(Co) against frequency co at different 
conversions in run 21. Relative conversions ~1~ c are: O, 1.0100; 13 
1.0075; A, 1.0050; A 1.0025; O 1.0000 (= gel point).  Note that at 
the gel point the plot  is almost linear, but appreciable curvature has 
developed at ~113 c = 1.01 
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(t~/a c < 1), some positive contribution to G' at high w, and a 
convex-downward course, would be expected. (Only weak 
evidence was found for this expected behaviour of visco- 
elastic pre-gel DMG/BTA because of instrumental difficulties.) 
However, the rapid approach to the linear equation: 

a ' ( w )  = k6o (28) 

with k a constant, as a /a  c J, 1 (gel poin0 over the narrow 
range 1.01 ~< o~/a c <<, 1.00, is striking. This suggests that 
equation (28) represents a new, presumably quite general 
law for the sharp characterization of a gel point. I f  this 
equation remains valid at the gel point over a sufficient 
range of frequencies, the corresponding spectrum of relaxa- 
tion frequencies, N(6o), is readily calculated from the stan- 
dard theory of linear viscoelasticity 3~, viz. a block 
distribution: 

N ( w )  = k/Tr (29) 

Accordingly, every positive relaxation frequency is equally 
probable at the gel point. 

Now it has been shown that gels of  DMG/BTA have prac- 
tically a tree-like structure (few cycles) Is. Statistical theory 
demonstrates that if we define a chain-segment in a tree-like 
gel at a/t~ c = 1 as a chain lying between any two branch- 
points in a molecule of the System (i.e. including the whole 
of the soluble fraction with the infinitesimal weight-fraction 
of gel), then the length-distribution of all chain-segments is 
precisely a block distribution. The chain-segments so de- 
fined overlap copiously, so that a given chemical bond may 
belong to many such chain-segments, which renders a 
straightforward decoupling procedure inapplicable. Accor- 
dingly, the solution of the eigenvalue problem of the Rouse 
matrix of a random, critically branched, system at the gel 
point remains an open problem requiring urgent solution. 

HISTORICAL PERSPECTIVES 

The historical review by Du~ek and Prins a2 on the structures 
and elasticity of networks was the first to give adequate 
weight to the detailed statistical structure of the underlying 
molecular graphs, based on the notion of an active chain 
put forward by Scanlan 33 and by Case a4. More recently, 
Graessley 2 remarked that 'conflicts regarding g are annoying, 
not only because they concern the foundations of an other- 
wise attractive and successful molecular theory, but also be- 
cause they prevent an unequivocal separation of chemical net- 
work contributions from other contributions such as chain 
entanglement, to the observed properties of real networks'. 
This remark, with its reminder of the role that experiment 
has to play, is equally valid for the other constants in the 
equation of state of a rubber. Mark and coworkers have 
made especially valuable studies 3s, refining measurements so 
that controversies regarding the multiplying constant of the 
logarithmic swelling term and the constant C2 might be 
settled. The characterization of the model networks plays 
an important part in refining measurements. The system 
DMG/BTA, prepared in the melt from pure, crystalline 
monomers, has previously been characterized by light- 
scattering Is, sol fraction studies Is, equilibrium a~ and sedi- 
mentation velocity 37 ultracentrifuge methods, gel chromato- 
graphy as, and other techniques, and was the subject of 
favourable comment from Flory 39. The present study set 
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out to exploit the peculiarity of the region of critical branch- 
ing around the gel point, which allows disturbances such as 
contributions from entanglements and cycles to be mini- 
inized 1a'4°. In fact, the exploitation of critical phenomena, 
together with the appropriate rescaling procedures, are too 
widely diffused and successful in chemical physics to need 
further commendation. Perhaps the advantages of the stra- 
tegy are purchased at the expense of more sophisticated con- 
trol and measuring equipment, e.g. here to deal with highly 
viscous liquids or weak gels. Buch such equipment is now 
readily available. 

It would be too sanguine to hope that our theoretical 
arguments in the Front-Factor Theory will finally settle 'the 
conflicts regardingg'~ The drive to pare down models re- 
quiring multidimensional continua to the combinatorial 
structure of graphs involves no deep or metaphysical prin- 
ciples. Usually the aim is to reinterpret in simpler formal 
mathematics those operations which reflect the properties 
of  supposedly continuum-based models, which have actually 
been used (as distinct from merely postulated at the outset) 
in more classical deductions. Those interested in extending 
such efforts for recasting theories of networks, as well as the 
general reader, will find Graessley's review 41 of the entangle- 
ment concept quite invaluable. 
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